AI in a globalised word

The eductional context of cultural and linguistic blases

Szerzők

  • Beták Norbert
    Affiliation
    Apor Vilmos Catholic College, associate professor  
  • Szűts Zoltán
    Affiliation
    Eszterházy Károly Catholic University, university full professor, dean, head of department
https://doi.org/10.3311/celisr.41090

Absztrakt

Generative AI tools, including large language models (LLMs), have witnessed increased popularity and have predominantly been trained using human-generated inputs. Nevertheless, as these AI models continue to expand across the Internet, there is a possibility that computer-generated content may be employed to train other AI models – or themselves – in a recursive loop. In this context, the issue of globalisation and its effect on AI-generated content appears to be a matter of increasing urgency. This paper explores how artificial intelligence is taught, used, and perceived in different cultural and educational contexts.  It also examines the implications of cultural biases embedded in large language models, the challenges of diversifying training data, and the ethical responsibility of AI deployment in global education systems.

Kulcsszavak:

generative AI, large language models (LLMs), cultural bias, AI in education

Hivatkozások

Adams, C., Pente, P., Lemermeyer, G., Rockwell, G. (2023) Ethical principles for artificial intelligence in K-12 education, Computers and Education Artificial Intelligence, 4, 100131. https://doi.org/10.1016/j.caeai.2023.100131

AlTwijri, L., Alghizzi, T. M. (2024) Investigating the integration of artificial intelligence in English as foreign language classes for enhancing learners' affective factors: A systematic review, Heliyon, 10(10), e31053. https://doi.org/10.1016/j.heliyon.2024.e31053

Al-Zahrani, A. M. (2024) Unveiling the shadows: Beyond the hype of AI in education, Heliyon, 10(9), e30696. https://doi.org/10.1016/j.heliyon.2024.e30696

Azuaje, F. (2019) Artificial intelligence for precision oncology: beyond patient stratification, npj Precision Oncology, 3(1), 6. Nature Portfolio. https://doi.org/10.1038/s41698-019-0078-1

Baidoo-Anu, D., Owusu Ansah, L. (2023) Education in the Era of Generative Artificial Intelligence (AI): Understanding the Potential Benefits of ChatGPT in Promoting Teaching and Learning, Journal of AI, 7(1), p. 52–62. https://doi.org/10.61969/jai.1337500

Bohacek, M., Farid, H. (2023) Nepotistically trained Generative-AI models collapse, arXiv. https://doi.org/10.48550/arxiv.2311.12202

Bulathwela, S., Pérez-Ortiz, M., Holloway, C., Cukurova, M., Shawe-Taylor, J. (2024) Artificial Intelligence Alone Will Not Democratise Education: On Educational Inequality, Techno-Solutionism and Inclusive Tools, Sustainability, 16(2), 781. https://doi.org/10.3390/su16020781

Černý, M. (2024) University Students' Conceptualisation of AI Literacy: Theory and Empirical Evidence, Social Sciences, 13(3), 129. https://doi.org/10.3390/socsci13030129

Choudhary, K., DeCost, B., Chen, C. et. al. (2022) Recent advances and applications of deep learning methods in materials science, npj Computational Materials, 8(1), 59. https://doi.org/10.1038/s41524-022-00734-6

Darwin, Rusdin, D., Mukminatien, N., Suryati, N., Laksmi, E. D., Marzuki (2023) Critical thinking in the AI era: An exploration of EFL students' perceptions, benefits, and limitations, Cogent Education, 11(1), 2290342. https://doi.org/10.1080/2331186X.2023.2290342

FRA (2022) Bias in algorithms – Artificial intelligence and discrimination, December 8. Available at: http://fra.europa.eu/en/publication/2022/bias-algorithm (Accessed: 19.05.2025)

Franzen, C. (2023). The AI feedback loop: Researchers warn of 'model collapse' as AI trains on AI-generated content, June 12. VentureBeat. Available at: https://venturebeat.com/ai/the-ai-feedback-loop-researchers-warn-of-model-collapse-as-aitrains-on-ai-generated-content/ (Accessed: 19.05.2025)

Gentile, M., Città, G., Perna, S., Allegra, M. (2023) Do we still need teachers? Navigating the paradigm shift of the teacher's role in the AI era, Frontiers in Education, 8, 1161777. https://doi.org/10.3389/feduc.2023.1161777

Gerstgrasser, M., Schaeffer, R., Dey, A., et. al. (2024) Is model collapse inevitable? breaking the curse of recursion by accumulating real and synthetic data. arXiv. https://doi.org/10.48550/arXiv.2404.01413

Gillani, N., Eynon, R., Chiabaut, C., Finkel, K. A. (2023) Unpacking the "Black Box" of AI in Education, arXiv. https://doi.org/10.48550/arxiv.2301.01602

Harkut, D. G., Kasat, K. (2019) Introductory Chapter: Artificial Intelligence - Challenges and Applications [online]. In: Harkut, D. G. (ed.) Artificial Intelligence - Scope and Limitations, IntechOpen. https://doi.org/10.5772/intechopen.84624

Kalniņa, D., Nīmante, D., Baranova, S. (2024) Artificial intelligence for higher education: benefits and challenges for pre-service teachers, Frontiers in Education, 9. https://doi.org/10.3389/feduc.2024.1501819

Kak, A., Myers West, S. (2023) AI Now 2023 Landscape: Confronting Tech Power, AI Now Institute. https://ainowinstitute.org/2023-landscape

Khalid, U., Naeem, M., Stasolla, F., Syed, M., Abbas, M., Coronato, A. (2024) Impact of AI-Powered Solutions in Rehabilitation Process: Recent Improvements and Future Trends. International Journal of General Medicine, 2024(17), p. 943–969. https://doi.org/10.2147/ijgm.s453903

Khanam, M., Akther, S., Mizan, I., Islam, F., Chowdhury et. al. (2024) The Potential of Artificial Intelligence in Unveiling Healthcare's Future. Cureus, 16(10), e71625. https://doi.org/10.7759/cureus.71625

Kočková, P., Kilianová, K., Slepankova, M., Schmid, A., Kostolanyova, K. (2024) AI literacy in teacher education in the Czech Republic, Proceedings of the European Conference on e-Learning (ECEL), 23(1), p. 178–186. https://papers.academic-conferences.org/index.php/ecel/article/view/2753

Kumar, N. M. S. (2019) Implementation Of Artificial Intelligence In Imparting Education And Evaluating Student Performance, Journal of Artificial Intelligence and Capsule Networks, 1(1), p. 1–9. https://doi.org/10.36548/jaicn.2019.1.001

Liao, S. M. (2023) Ethics of AI and Health Care: Towards a Substantive Human Rights Framework, Topoi, 42(3), p. 857–866. https://doi.org/10.1007/s11245-023-09911-8

Lv, C., Guo, W., Yin, X., Liu, L., Huang, X., Li, S., Zhang, L. (2024) Innovative applications of artificial intelligence during the COVID-19 pandemic. Infectious Medicine, 3(1), 100095. https://doi.org/10.1016/j.imj.2024.100095

Ma, K., Zhang, Y., Hui, B.-H. (2024) How Does AI Affect College? The Impact of AI Usage in College Teaching on Students' Innovative Behavior and Well-Being, Behavioral Sciences, 14(12), 1223. https://doi.org/10.3390/bs14121223

Michaeli, T., Romeike, R., Seegerer, S. (2023) What Students Can Learn About Artificial Intelligence – Recommendations for K-12 Computing Education. In: Keane, T., Lewin, C., Brinda, T., Bottino, R. (eds.) Towards a Collaborative Society Through Creative Learning, WCCE 2022, IFIP Advances in Information and Communication Technology, 685, Springer, Cham. https://doi.org/10.1007/978-3-031-43393-1_19

Gil, Y., Perrault, R. (eds.) (2025) Artificial Intelligence Index Report 2025, [online], Stanford Institute for Human-Centered Artificial Intelligence, Stanford. https://hai.stanford.edu/ai-index/2025-ai-index-report

Owoc, M. L., Sawicka, A., Weichbroth, P. (2021) Artificial Intelligence Technologies in Education: Benefits, Challenges and Strategies of Implementation. In: M. L. Owoc, M. Pondel (eds.) IFIP advances in information and communication technology, [e-book]. p. 37–58. Springer International Publishing, Cham. https://doi.org/10.1007/978-3-030-85001-2_4

Ożegalska-Łukasik, N., Łukasik, S. (2023) Culturally Responsive Artificial Intelligence - Problems, Challenges and Solutions, arXiv.https://doi.org/10.48550/arxiv.2312.08467

Paliszkiewicz, J., Gołuchowski, J. (eds.) (2024) Trust and Artificial Intelligence: Development and Application of AI Technology, Routledge, New York. https://doi.org/10.4324/9781032627236

Peterson, A. J. (2025) AI and the problem of knowledge collapse, AI & Society, https://doi.org/10.1007/s00146-024-02173-x

Pugliese, R., Regondi, S., Marini, R. (2021) Machine learning-based approach: Global trends, research directions, and regulatory standpoints, Data Science and Management, 4, p. 19–29. https://doi.org/10.1016/j.dsm.2021.12.002

Rani, P. (2020) A Comprehensive Survey of Artificial Intelligence (AI): Principles, Techniques, and Applications, Turkish Journal of Computer and Mathematics Education (TURCOMAT), 11(3), p. 1990–2000. https://doi.org/10.17762/turcomat.v11i3.13596

Roshanaei, M., Olivares, H., Lopez, R. R. (2023) Harnessing AI to Foster Equity in Education: Opportunities, Challenges, and Emerging Strategies, Journal of Intelligent Learning Systems and Applications, 15(4), p. 123–143. https://doi.org/10.4236/ jilsa.2023.154009

Rusmiyanto, R., Huriati, N., Fitriani, N., Tyas, N. K., Rofi’i, A., Sari, M. N. (2023) The Role Of Artificial Intelligence (AI) In Developing English Language Learner's Communication Skills, Journal on Education, 6(1), p. 750–757. https://doi.org/10.31004/joe.v6i1.2990

Samuel, Y., Brennan-Tonetta, M., Samuel, J., et. al. (2023) Cultivation of human centered artificial intelligence: culturally adaptive thinking in education (CATE) for AI, Frontiers in Artificial Intelligence. 6. https://doi.org/10.3389/frai.2023.1198180

Seddik, M. A., Chen, S-W., Hayou, S., Youssef, P., Debbah, A. M. (2024) How bad is training on synthetic data? A statistical analysis of language model collapse, arXiv. https://doi.org/10.48550/arXiv.2404.05090

Shumailov, I., Shumaylov, Z., Zhao, Y. et al. (2024) AI models collapse when trained on recursively generated data, Nature 631, p. 755–759. https://doi.org/10.1038/s41586-024-07566-y

Turós, M., Nagy, R., Szűts, Z. (2025) What percentage of secondary school students do their homework with the help of artificial intelligence? - A survey of attitudes towards artificial intelligence, Computers and Education: Artificial Intelligence, 8, 100394. https://doi.org/10.1016/j.caeai.2025.100394

Wang, T., Lund, B., Marengo, A., et. al.(2023) Exploring the Potential Impact of Artificial Intelligence (AI) on International Students in Higher Education: Generative AI, Chatbots, Analytics, and International Student Success, Applied Sciences, 13(11), 6716. https://doi.org/10.3390/app13116716

Yim, I. H. Y., Wegerif, R. (2024) Teachers' perceptions, attitudes, and acceptance of artificial intelligence (AI) educational learning tools: An exploratory study on AI literacy for young students, Future in Educational Research. https://doi.org/10.1002/fer3.65

Yusuf, A., Pervin, N., González, M. R. (2024) Generative AI and the future of higher education: a threat to academic integrity or reformation? Evidence from multicultural perspectives, International Journal of Educational Technology in Higher Education, 21(1), p. 318–345. https://doi.org/10.1186/s41239-024-00453-6

Zawacki-Richter, O., Marín, V. I., Bond, M., Gouverneur, F. (2019) Systematic review of research on artificial intelligence applications in higher education – where are the educators?, International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0

Megjelent

2025-06-20

Hogyan kell idézni

Beták, N. és Szűts, Z. (2025) AI in a globalised word: The eductional context of cultural and linguistic blases, Közép-európai Könyvtár- és Információtudományi Szemle (CELISR), 2(2). https://doi.org/10.3311/celisr.41090

Folyóirat szám

Rovat

Tanulmányok